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SENSOR FAULT DIAGNOSIS BASED ON A ∞ SLIDING MODE AND
UNKNOWN INPUT OBSERVER FOR TAKAGI-SUGENO SYSTEMS WITH

UNCERTAIN PREMISE VARIABLES
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Carlos-Manuel Astorga-Zaragoza, Roque A. Osornio-Rios and Ildeberto Santos-Ruiz

ABSTRACT

This paper presents the design of a ∞ sliding mode and an unknown input observer for Takagi-Sugeno (TS)
systems. Contrary to the common approaches reported in the literature, which considers exact premise variables, this
work deals with the problem of inexact measurements of the premise variables. The proposed method is based on a ∞
criteria to be robust to disturbances, sensor noise and uncertainty on the premise variables. The observer convergence
and stability are established by considering a quadratic Lyapunov function, which relies on a set of Linear Matrix
Inequalities. Then, a dedicated observer scheme is considered to detect and isolate sensor faults. Finally, the performance
and applicability of the proposed approach are illustrated through numerical experiments on a nonlinear model that
represents the lateral dynamics of an electric vehicle.
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I. INTRODUCTION

In the last years, the study of fault detection and iso-
lation (FDI) methods has increased substantially, this is
due to the fact of the increasing industrial demand of per-
formance, safety and reliability [1,2]. Among the different
approaches to design FDI systems, the FDI based on
state observers has proved to be one of the best trade-offs
between performance and applicability [3]. A wide range
of FDI methods based on observers can be found in
the literature, for instance, by considering a Kalman fil-
ter [4], ∞ filter [5–7], FDI and fault tolerant control
with time-delay [5,8], mixed ∞∕− [9,10], unknown
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input observers [11], sliding mode [12,13], fault detection
and fault estimation based on descriptor systems [14–16],
among others. It is also clear that a reliable FDI system
requires realistic models, based on data or first princi-
ples, that represent the complex dynamics of real physical
systems. These dynamics commonly have a nonlinear
behavior, and therefore the mathematical models are also
nonlinear. Nonlinear models are complex to analyze and
consequently, designing nonlinear FDI schemes for this
kind of systems is still a difficult task from the theoretical
and practical point of view. However, it has been proved
that FDI schemes that consider both non-linearities and
non-stationary exogenous parameters are less conserva-
tive and easy to design than nonlinear approaches [17].
Recently, the Takagi-Sugeno (TS) systems representation
has proved to be an interesting approach to deal with
complex nonlinear systems [18].

TS models describe nonlinear systems through a
collection of time-invariant linear models (LTI) interpo-
lated by nonlinear functions known as weighting func-
tions. These local models can be obtained from the
well-known, nonlinear sector approach, which trans-
forms the nonlinear system into a polytopic TS system
[19]. Note that there exists an equivalence between TS
and linear parameter varying systems (LPV), due to
the fact that, LPV and TS models are both obtained
from the nonlinear-sector transformation, which is com-
monly called as a quasi-LPV (qLPV) system [20]. Then,
the scheduling variables mentioned in qLPV systems are
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analogous to the term premise variables in TS systems
[3,21]. In the literature, the premise variables are classi-
fied into two types: (i) the measurable premise variables
that depend mainly on the inputs or outputs of the system
and on the non-stationary exogenous parameters [18];
and (ii) the unmeasurable premise variables that depends
on unmeasurable states, i.e. when there is not a sensor
to measure a premise parameter or when the cost of the
sensors is prohibitive [22].

The design of fault diagnosis systems based on
TS observers has been receiving considerable attention
as can be consulted in the recent book [3]. Nonethe-
less, most of the works consider the case of measurable
premise variables, moreover, it is considered that such
variable is measured with high precision. However,
from a practical point of view, these premise variables
are measured with a certain degree of uncertainty, e.g.
sensors with offsets, low resolutions, imprecisions due
to calibration, weather changes, instrument quality,
etc. [23]. In this case, it is necessary to consider inex-
act premise variables in order to design a reliable and
effective FDI system. Few results have been developed
considering the uncertain case. For instance, in [24] the
design of a LPV controller was presented considering
inaccurate scheduling variables. In [25] a filter, which
considers additive uncertainty in the scheduling vari-
ables, was formulated. This work was extended with
additive-multiplicative uncertainty in [23]. In [17] an
uncertain sliding mode LPV observer was proposed and
applied to the lateral dynamics of an electric vehicle.
More recently, in [26], an FDI system based on a sliding
mode observer was considered to estimate actuators
faults. However, to the best knowledge of the authors, the
fault detection approach, which considers time-varying
outputs and unknown inputs has not been well
investigated yet [27].

In this paper, the design of a ∞ sliding mode
and unknown input TS observer is presented. The pro-
posed approach considers inexact premise variables and
time-variant output and its extension to the detection
and isolation of faults in sensors. The performance crite-
ria is satisfied to be robust to disturbances, sensor noise
and measurement uncertainty on the premise variables by
solving a set of linear matrix inequalities (LMIs), which
are obtained through a Lyapunov formalism. Unlike the
results in [17,26], the proposed method considers: (i) a
TS system with uncertain premise variables presented
in Section II; (ii) a time-varying output in the devel-
opment of the ∞ sliding mode and unknown input
observer presented in Section III; (iii) relaxed LMI con-
ditions, which increase the applicability of the method;
and (iv) a dedicated observer scheme for the FDI and
its application on the lateral dynamics of an electric

vehicle presented in Section IV. Conclusions are given
in Section VI.

II. PROBLEM STATEMENT

Consider a Takagi-Sugeno system described by:

ẋ(t) =
q∑

i=1

𝜇i(𝜉(t))
(
Aix(t) + B1iu(t) + B2i𝜔(t)

)
,

y =
q∑

i=1

𝜇i(𝜉(t))Cix(t) + Dv(t),
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, 𝜔(t), y(t) ∈ Rp, and v(t)
are the state vector, input vector, disturbance, output vec-
tor and sensor noise respectively. Ai, B1i, B2i, Ci, and D
are known matrices with compatible dimensions. q rep-
resents the number of linear sub-models and 𝜇i ∈ R are
weighting functions that depend on 𝜉(t), which are also
known as premise variables or scheduling variables [28].
The weighting functions satisfy the convex sum:

∀i ∈
[
1, 2,… , q

]
, 𝜇i(𝜉(t)) ≥ 0,

q∑
i=1

𝜇i(𝜉(t)) = 1, ∀t.
(2)

Commonly, the premise variables depend on
non-stationary exogenous parameters measured online
or measured states. Several works have been published
over the last years assuming that the premise variables
are perfectly measurable as described in [18]. Neverthe-
less, in many practical applications, the premise variables
are measured with certain levels of uncertainty or are not
measurable [23,26,29]. For example, in a TS model of an
electric vehicle, the premise variable is given by the lon-
gitudinal speed, which is assumed to be measured with
precision [30]. However, in practice, the longitudinal
speed is estimated from the number of turns of the tires
with respect to time, whose measurements are affected
by the surface of the road, skidding, sensor noise, among
others. In other words, the longitudinal speed is mea-
sured inexactly with a certain degree of uncertainty [17].
In this case, the traditional methods are not applicable
and it is necessary to consider a strategy to deal with the
uncertainty in those measures. This problem is addressed
in this work.

Before presenting the main results, some assump-
tions are considered:

• Matrices Ai are Hurwitz.

• The TS system (1) is locally observable.

• The disturbance vector 𝜔(t) is unknown and
bounded:
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∥ 𝜔(t) ∥< 𝛿1, (3)

where 𝛿1 is a known positive scalar.

Note that, in the case of perfectly measured premise
variables, the weighting functions can be used directly
in the design of the control algorithms such as state
observers or controllers. Nonetheless, in the case of
premise variables with uncertainties, there exist mis-
matches between the weighting functions that can dete-
riorate or destabilize the observer or controller. In this
case, it is necessary to use a robust approach that con-
siders uncertain weighting functions in order to guar-
antee the stability and performance of the proposed
algorithm. In this work, the weighting functions are
considered as:

𝜇i(𝜉(t)) = 𝜌i(t) ∗ 𝜇̂i(𝜉(t)), (4)

where 𝜇̂i(𝜉(t)) are the uncertain weighting functions due
to an inaccurate measure of the premise variables 𝜉(t);
𝜌i(t) is the uncertain factor, whose minimum and max-
imum values are given by 𝜌

i
and 𝜌i, respectively. Then,

by considering (4), system (1) can be rewritten as an
uncertain system as:

ẋ(t) =
q∑

i=1

𝜇̂i(𝜉(t))
(
Āix(t) + B̄1iu(t) + B̄2i𝜔(t)

)
,

y =
q∑

i=1

𝜇̂i(𝜉(t))C̄ix(t) + Dv(t),
(5)

where:

q∑
i=1

𝜇̂i(𝜉(t))Āi =
q∑

i=1

𝜌i(t)𝜇̂i(𝜉(t))Ai

=
q∑

i=1

𝜇̂i(𝜉(t))
(
Ai + (𝜌i(t) − 1)Ai

)
=

q∑
i=1

𝜇̂i(𝜉(t))
(
Ai + ΔAi(t)

)
,

(6)

q∑
i=1

𝜇̂i(𝜉(t))B̄1i =
q∑

i=1

𝜌i(t)𝜇̂i(𝜉(t))B1i

=
q∑

i=1

𝜇̂i(𝜉(t))
(
B1i + (𝜌i(t) − 1)B1i

)
=

q∑
i=1

𝜇̂i(𝜉(t))
(
B1i + ΔB1i(t)

)
,

(7)

q∑
i=1

𝜇̂i(𝜉(t))B̄2i𝜔(t) =
q∑

i=1

𝜌i(t)𝜇̂i(𝜉(t))B2i𝜔(t)

=
q∑

i=1

𝜇̂i(𝜉(t))B2i𝜔1(t),
(8)

and,

q∑
i=1

𝜇̂i(𝜉(t))C̄i =
q∑

i=1

𝜌i(t)𝜇̂i(𝜉(t))Ci

=
q∑

i=1

𝜇̂i(𝜉(t))
(
Ci + (𝜌i(t) − 1)Ci

)
=

q∑
i=1

𝜇̂i(𝜉(t))
(
Ci + ΔCi(t)

)
,

(9)

with:

ΔAi(t) = (𝜌i(t) − 1)Ai,

ΔBi(t) = (𝜌i(t) − 1)Bi,

ΔCi(t) = (𝜌i(t) − 1)Ci,

𝜔1(t) = 𝜌i(t)𝜔(t).

In order to facilitate the observer design, the uncer-
tainties and the external noise are bounded as follows:

‖ΔAi(t)‖ ≤ 𝜁1i, (10)

‖ΔCi(t)‖ ≤ 𝜁2i, (11)

‖𝜔1(t)‖ ≤ 𝛿2, (12)

with positives scalars 𝜁1i, 𝜁2i and 𝛿2. Since 𝜌i has a lower
and a upper bound, the matrix ΔB1i(t) can be rewritten
as:

ΔB1i(t) = 𝛿3iMB1i, (13)

where 𝛿3i is a positive scalar with the value of 𝛿3i = max{∣
𝜌i − 1 ∣, ∣ 𝜌

i
− 1 ∣} and ‖M‖ ≤ 1.

Remark 1. In most of the works, the output matrix is
considered as constant. Nevertheless, in some applica-
tions this matrix is not constant, e.g. [30,31]. In this case,
the uncertainty also affects matrices Ci, but considering
a time-varying matrix is not trivial due to the fact that
affects all the observer design and increases the difficulty.
However, considering a non-constant output matrix is
important in order to increase the applicability of the
observer.

Under the assumption that the uncertain system (5)
is locally observable, the following sliding mode observer
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is proposed:

̂̇x(t) =
q∑

i=1

𝜇̂i(𝜉(t))
(

Aix̂(t) + B1iu(t) + Li(y(t) − ŷ(t))

+ 𝜑i(t) + 𝜎i(t)
)
,

ŷ =
q∑

i=1

𝜇̂i(𝜉(t))Cix̂(t),

(14)

where x̂(t) represents the estimated states, 𝜑i(t) and 𝜎i(t)
are discontinuous functions, ŷ(t) is the estimated out-
put vector, Li are unknown gain matrices of appropriate
dimensions that has to be computed.

Then, the challenge is to find the Li matrices such
that the estimation error between systems (5) and (14)
converge asymptotically to zero despite disturbances,
sensor noise and uncertainties. In the following section
the design conditions of the Takagi-Sugeno observer are
established.

III. MAIN RESULT: OBSERVER DESIGN

In order to establish the conditions for the asymp-
totic convergence of the observer (14), let us define the
estimation error as:

e(t) = x(t) − x̂(t). (15)

The dynamic of the estimation error can be evalu-
ated using the Equations (6)-(9) and (14), such that:

ė(t) =
q∑

i=1

𝜇̂i(𝜉(t))
q∑

j=1

𝜇̂j(𝜉(t))
(
(Ai − LiCj)e(t)

+ (ΔAi − LiΔCj)x(t) + B3i𝜈(t) + B2i𝜔1(t)

+ 𝜑i(t) + 𝜎i(t)
)
,

(16)

with

B3i = B̂1i + Δ3iMB̃1i, (17)

B̂1i = [0 − LiD], (18)

B̃1i = [B1i 0], (19)

Δ3i = 𝛿3iI , (20)

𝜈(t) = [u(t) v(t)]T . (21)

It can be seen from (16) that the gains to be tuned,
the state vector x, the unknown external input, 𝜑i(t) and
𝜎i(t) are also involved in the error estimation. Since the
main criterion of selecting the gain Li is to make stable
the estimation error system such that the estimation error
converge to zero, we define a new variable as:

z(t) = Ge(t), (22)

with a constant matrix G. Then, the challenges and objec-
tives are to tune the observer gain Li and discontinuous
functions 𝜑i(t) and 𝜎i(t) such that:

• The estimation error system in (16) is asymptotically
stable when the external input is zero.

• The effect from the external input 𝜈(t) to the signal
z(t) is constrained as:

‖z(t)‖2 < 𝛾‖𝜈(t)‖2, (23)

where ‖X‖2 denotes the 2-norm of 2-bounded sig-
nal X and 𝛾 is the ∞ performance index.

• The discontinuous functions𝜑i(t) and 𝜎i(t) can com-
pensate for the effects of 𝜔1(t) and ΔAi − LiΔCj
respectively.

Before proceeding, the following lemmas are pre-
sented.

Lemma 1 [32]. For matrices X and Y with appropriate
dimensions, the following properly holds for any positive
scalar 𝜓 :

XT Y + Y T X ≤ 𝜓XT X + 𝜓−1Y T Y .

Lemma 2 [33]. If there exist real matrices Ξ = ΞT , Ê and
F̂ with compatible dimensions, and M satisfying ∥ M ∥≤
1, then, the following condition:

Ξ + ÊMF̂ + (ÊMF̂)T < 0, (24)

is satisfied if and only if there is a positive scalar 𝜓 > 0
such that

⎡⎢⎢⎣
Ξ Ê 𝜓F̂T

∗ −𝜓I 0
∗ ∗ −𝜓I

⎤⎥⎥⎦ < 0. (25)
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Lemma 3 [32]. Let Ψij be matrices of appropriate dimen-
sions where i, j → {1,… , q}. Then Ψij < 0 holds if

Ψii < 0, ∀i, (26)

2
q − 1

Ψii + Ψij + Ψji < 0, i ≠ j. (27)

The following theorem provides the conditions for the
asymptotic stability and the ∞ performance of the esti-
mation error in (16).

Theorem 1. Given the TS system (1) and the state
observer (14), the estimation error (16) is asymptotically
stable with ∞ performance and attenuation level 𝛾 > 0,
if there exist a matrix P = PT > 0, matrices Wi and pos-
itive scalars 𝜓1, 𝜓2, 𝜓3, 𝜓4 and 𝜓5 such that following
optimization problem has solution:

min 𝛾

under the following LMI constraints:

⎡⎢⎢⎢⎣
Λij PB3i P Wi
∗ −𝛾2I 0 0
∗ ∗ −𝜓1I 0
∗ ∗ ∗ −𝜓3I

⎤⎥⎥⎥⎦
< 0, (28)

with:

Λij = AT
i P + PAi − CT

j W T
i − WiCj + 𝜓2𝜁

2
1iI

+ 𝜓4𝜁
2
2iI + 𝜓5I + GT G,

ey(t) = y(t) − ŷ(t),

if ey(t) ≠ 0, then

𝜑i(t) = 𝛿2
2𝜓

−1
5

‖PB2i‖2

2ey(t)T ey(t)
P−1

q∑
j=1

𝜇̂j(𝜉(t))CT
j ey(t),

𝜎i(t) = 𝜓9i
x̂(t)T x̂(t)

2ey(t)T ey(t)
P−1

q∑
j=1

𝜇̂j(𝜉(t))CT
j ey(t).

If ey = 0, then

𝜑i(t) = 0,

𝜎i(t) = 0,

where:

𝜓6 =
𝜓1

𝜓2 − 𝜓1
,

𝜓7 =
𝜓3

𝜓4 − 𝜓3
,

𝜓9,i = 𝜓1(1 + 𝜓6)𝜁2
1i + 𝜓3(1 + 𝜓7)𝜁2

2i.

Then, the observer parameters are computed by:

Li = P−1Wi. (29)

Proof. Consider the following performance criteria:

 (t) ∶= V̇ (t) + z(t)T z(t) − 𝛾𝜈(t)T𝜈(t) < 0, (30)

where V (t) is the Lyapunov function which is selected as
V = e(t)T Pe(t), with P = PT > 0, such that:

 (t) ∶= ė(t)T Pe(t) + e(t)T Pė(t)
+ z(t)T z(t) − 𝛾2𝜈(t)T𝜈(t).

(31)

Then, by considering (16), the following inequality is
obtained:

 (t) ∶=
q∑

i=1

q∑
j=1

𝜇̂i(𝜉(t))𝜇̂j(𝜉(t))

×
(

e(t)T
(
(Ai − LiCj)T P + P(Ai − LiCj)

)
e(t)

+ x(t)TΔAT
i Pe(t) + e(t)T PΔAix(t)

+ x(t)TΔCT
j LT

i Pe(t) + e(t)T PLiΔCjx(t)

+ 𝜔1(t)T BT
2iPe(t) + eT PB2i𝜔1(t)

+ 2e(t)T PB3i𝜈(t) + 2e(t)T P𝜑i(t) + 2e(t)T P𝜎i(t)

+ e(t)T GT Ge(t) − 𝛾2𝜈(t)T𝜈(t)
)
< 0.

(32)

In order to get an expression in terms of Lemma 1,
Equation (32) can be rewritten as:

x(t)TΔAT
i Pe(t) + e(t)T PΔAix(t)

≤ 𝜓−1
1 (Pe(t))T Pe(t) + 𝜓1x(t)TΔAT

i ΔAix(t),
(33)

considering (10), the following relationship is established:

𝜓−1
1 (Pe(t))T Pe(t) + 𝜓1x(t)TΔAT

i ΔAix(t)
≤ 𝜓−1

1 e(t)T P2e(t) + 𝜓1𝜁
2
1ix(t)

T x(t),
(34)

where x(t) = e(t)+x̂(t), then, the expression (34) becomes:

𝜓−1
1 e(t)T P2e(t) + 𝜓1𝜁

2
1i (e(t) + x̂(t))T (e(t) + x̂(t))

= 𝜓−1
1 e(t)T P2e(t) + 𝜓1𝜁

2
1i

(
e(t)T e(t) + x̂(t)T e(t)

+ e(t)T x̂(t) + x̂(t)T x̂(t)
)
.

(35)
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Using again the Lemma 1, the last expression can be
rewritten as follows:

𝜓−1
1 e(t)T P2e(t) + 𝜓1𝜁

2
1i

(
e(t)T e(t)

+ x̂(t)T e(t) + e(t)T x̂(t) + x̂(t)T x̂(t)
)

≤ 𝜓−1
1 e(t)T P2e(t) + 𝜓2𝜁

2
1ie(t)

T e(t)
+ 𝜓1(1 + 𝜓6)𝜁2

1ix̂(t)
T x̂(t),

(36)

where 𝜓2 = 𝜓1(1 + 𝜓−1
6 ).

Using the previous procedure one gets:

x(t)TΔCT
j LT

i Pe(t) + e(t)T PLiΔCjx(t)

≤ 𝜓−1
3 e(t)T PLiL

T
i Pe(t) + 𝜓3𝜁

2
2jx(t)

T x(t)

≤ 𝜓−1
3 e(t)T PLiL

T
i Pe(t) + 𝜓3𝜁

2
2j(e(t)

+ x̂(t))T (e(t) + x̂(t))
= 𝜓−1

3 e(t)T PLiL
T
i Pe(t) + 𝜓3𝜁

2
2j

(
e(t)T e(t)

+ x̂(t)T e(t) + e(t)T x̂(t) + x̂(t)T x̂(t)
)

≤ 𝜓−1
3 e(t)T PLiL

T
i Pe(t) + 𝜓4𝜁

2
2je(t)

T e(t)

+ 𝜓3(1 + 𝜓7)𝜁2
2j x̂(t)

T x̂(t),

(37)

where 𝜓4 = 𝜓3(1 + 𝜓−1
7 ).

Two cases can therefore be distinguished according
to the value of the output residual:

Case 1. If ey = 0, since each subsystem is observable,
then, the estimation error is zero.
Case 2. If ey ≠ 0, then, the following expression holds:

2e(t)T PB2i𝜔1(t) ≤ 𝜓5e(t)T e(t) + 𝜓−1
5 ‖PB2i𝜔1(t)‖2

≤ 𝜓5e(t)T e(t) + 𝜓−1
5 𝛿2

2‖PB2i‖2.

(38)

In order to cancel the effect of the disturbances
and uncertainties on the dynamics of the output sys-
tem, 𝜑i(t) and 𝜎i(t) are selected as:

2e(t)T P𝜑i(t) = 𝜓−1
5 𝛿2

2 ∥ PB2i ∥2, (39)

2e(t)T P𝜎i(t) =
(
𝜓1(1 + 𝜓6)𝜁2

1i

+ 𝜓3(1 + 𝜓7)𝜁2
2j

)
x̂(t)T x̂(t).

(40)

Such that the performance criteria  (t) is:

 (t) ≤
q∑

i=1

q∑
j=1

𝜇̂i(𝜉(t))𝜇̂j(𝜉(t))
(

e(t)TΓe(t)

+ 2e(t)T PB3i𝜈(t) − 𝛾2𝜈(t)T𝜈(t)
) (41)

=
q∑

i=1

q∑
j=1

𝜇̂i(𝜉(t))𝜇̂j(𝜉(t))
([

e(t)T 𝜈(t)T
]

×
[
Γij PB3i
∗ −𝛾2I

] [
e(t)
𝜈(t)

])
,

(42)

where

Γij = (Ai − LiCj)T P + P(Ai − LiCj) + 𝜓−1
1 P2

+ 𝜓−1
3 PLi(PLi)T + 𝜓2𝜁

2
1iI + 𝜓4𝜁

2
2jI

+ 𝜓5I + GT G.

The analysis of these two cases prove that (30)
holds if:[

Γij PB3i
∗ −𝛾2I

]
< 0. (43)

Due to the fact that inequality (43) is nonlinear, a
change of variable Wi = PLi is performed in order
to obtain a LMI representation. Finally, the Schur
complement is considered to obtain the LMI given in
Theorem 1, which can be easily solved with specialized
software. This completes the proof. □

The condition in (30) is satisfied when the condition
(28) holds. Therefore, both the stability and the ∞ per-
formance are achieved when the conditions (28) holds.
Theorem 1 gives sufficient conditions, which guarantee
the observer stability with∞ performance. Nonetheless,
due to the fact that the time-varying matrix B3i is uncer-
tain as given in (17), with M representing the uncertain
term, the condition given in (28) have an infinite dimen-
sion. Then, by considering Lemma 2, the matrix M is
eliminated from Theorem 1, such that it can be rewritten
as:

Theorem 2. Given the TS system (1) and the state
observer (14), the estimation error (16) is asymptotically
stable with ∞ performance and attenuation level 𝛾 > 0,
if there exist a matrix P = PT > 0, matrices Wi and posi-
tive scalars 𝜓1, 𝜓2, 𝜓3, 𝜓4, 𝜓5, and 𝜓8i such that following
optimization problem can be solved:

min 𝛾

under the following LMI constraints:

⎡⎢⎢⎢⎢⎢⎢⎣

Λij PB̂1i P Wi PΔ3i 0
∗ −𝛾2I 0 0 0 𝜓8iB̃

T
1j

∗ ∗ −𝜓1I 0 0 0
∗ ∗ ∗ −𝜓3I 0 0
∗ ∗ ∗ ∗ −𝜓8iI 0
∗ ∗ ∗ ∗ ∗ −𝜓8iI

⎤⎥⎥⎥⎥⎥⎥⎦
< 0. (44)
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Then, the observer parameters are computed by:

Li = P−1Wi. (45)

Proof. The conditions in (28) can be rewritten as,

⎡⎢⎢⎢⎢⎣

Λij PB̂1i P Wi

∗ −𝛾2I 0 0

∗ ∗ −𝜓1I 0

∗ ∗ ∗ −𝜓3I

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

PΔ3i

0

0

0

⎤⎥⎥⎥⎥⎦
M

[
0 B̃1i 0 0

]

+

⎛⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎣

PΔ3i

0

0

0

⎤⎥⎥⎥⎥⎦
M

[
0 B̃1i 0 0

]⎞⎟⎟⎟⎟⎠

T

< 0.

(46)

In terms of Lemma 2, the conditions (28) and (44) are
equivalent. □

Remark 2. The main disadvantage of a TS system
is that the number of sub-models increases significa-
tively with respect to the number of nonlinear terms.
In consequence, the computational load becomes heavy
and, it can be difficult to find a feasible solution for
Theorem 2. In order to avoid this problem, based on
Lemma 3, new stability conditions are derived by relax-
ing the LMI conditions, such that the following Corollary
is obtained:

Corollary 1. Given the TS system (1) and the state
observer (14), the estimation error (16) is asymptoti-
cally stable with ∞ performance and attenuation level
𝛾 > 0, if there exist a matrix P = PT > 0,
matrices Wi and positive scalars 𝜓1, 𝜓2, 𝜓3, 𝜓4, 𝜓5 and
𝜓8i such that the following optimization problem can
be solved:

min 𝛾

Ψii < 0, i = 1,… , q, (47)

2
q − 1

Ψii + Ψij + Ψji < 0,

i, j = 1,… , q, i ≠ j.
(48)

with:

Ψij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Λij

[
0 −WiD

]
P Wi PΔ3i 0

∗ −𝛾2I 0 0 0 𝜓8iB̃
T
1j

∗ ∗ −𝜓1I 0 0 0

∗ ∗ ∗ −𝜓3I 0 0

∗ ∗ ∗ ∗ −𝜓8iI 0

∗ ∗ ∗ ∗ ∗ −𝜓8iI

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, the observer parameters are computed by:

Li = P−1Wi. (49)

Remark 3. It is important to note that the implementa-
tion of this observer induces a practical problem. This
take place when the magnitude of𝜑i(t) and 𝜎i(t) increases
without limit due to the fact that the estimation error ey(t)
tends to zero. This problem can be overcome by taking in
consideration the following constraints:

If ey(t) ≥ 𝜖, then

𝜑i = 𝛿2
2𝜓

−1
5

‖PB2i‖2

2ey(t)T ey(t)
P−1

q∑
j=1

𝜇̂j(𝜉)CT
j ey(t),

𝜎i = 𝜓9i
x̂T x̂

2ey(t)T ey(t)
P−1

q∑
j=1

𝜇̂j(𝜉)CT
j ey(t).

If ey < 𝜖, then

𝜑i = 0,

𝜎i = 0,

where 𝜖 > 0 is any small threshold parameter. With
this new restriction, the estimation error cannot converge
asymptotically to zero, but to a small neighborhood of
zero depending on the magnitude of 𝜖.

IV. FAULT DETECTION AND ISOLATION

Note that the previous development can be applied
to detect and isolate faults by means of a bank of
observers, which can adopt the well known generalized
observer scheme (GOS) or the dedicated observer scheme
(DOS) [34]. In the GOS, each observer is designed to be
sensitive to all faults but one, while in the DOS, each
observer is sensitive only to one fault. In order to exem-
plify the application of the proposed method, in this work
a DOS is considered. In the DOS, separate observers are
designed, in this way, the kth observer receives its scalar
input yk(t) from only the kth sensor and each kth observer
provides the estimated kth output. The plant input vector
u(t) is also applied to each of the kth dedicated observers.
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If all the sensors are fault free, the estimated output
ŷk(t) will be identical to yk(t). Then, under sensor faults,
system (1) can be represented as:

ẋ(t) =
q∑

i=1

𝜇i(𝜉(t))
(
Aix(t) + B1iu(t) + B2i𝜔(t)

)
,

y(t) =
q∑

i=1

𝜇i(𝜉(t))Cix(t) + Dv(t) + Df f (t),

(50)

where f (t) denotes the sensor faults vector, and Df = Ip.
Each observer takes the form:

̂̇xk(t) =
q∑

i=1

𝜇̂i(𝜉(t))
(

Aix̂
k(t) + B1iu

+ Lk
i (y

k(t) − ŷk(t)) + 𝜑k
i (t) + 𝜃

k
i (t)

)
,

ŷk(t) =
q∑

i=1

𝜇̂i(𝜉(t))Ck
i x̂k.

(51)

Then, the kth normalized residual is expressed as:

rk(t) = ‖yk(t) − ŷk(t)‖, (52)

such that, if rk(t) is less than a predefined threshold (th),
then, the system is working under nominal conditions;
but if rk > th, then, the system is working on faulty
conditions. For example, if the fault occurs in sensor 3,
the residual r3(t) changes its value, but the other residues
remains insensitive or close to zero. By considering all
possible scenarios, a unique signature for each fault can
be obtained as shown in Table I.

This scheme produces a decoupled sensor fault
detection and isolation method. Nevertheless, it is not
possible to detect simultaneous faults nor estimate the
magnitude, which will be considered in future work.

Remark 4. In order to guarantee robustness against
measurement noise, model mismatches, and the inexact
premise variable, Corollary 1 have to be solved for each
observer in the bank.

Table I. Incidence Matrix.

Fault F1 F2 · · · Fk‖r1(t)‖ 1 0 · · · 0‖r2(t)‖ 0 1 · · · 0
⋮ ⋮ ⋮ · · · ⋮‖rk(t)‖ 0 0 · · · 1

V. NUMERICAL EXAMPLES

This section includes two different examples to illus-
trate the effectiveness of the proposed approach. The first
example considers a comparison with the case of unmea-
surable premise variable, and the second example is given
to illustrate the method in a more complex system.

5.1 Example 1

The aim of this numerical example is to compare
the performance of the observer in H∞ sliding mode
presented in Section III against the case of unmeasur-
able premise variable. The observers are applied to a DC
motor series in order to estimate the current I(t) and the
angular velocity 𝜔(t). The TS model is presented in [35],
which considers that x2(t) = I(t) is the premise vari-
able and the output of the system. Note that, as stated
in [35], x2(t) is measurable, however, in order to improve
the observer performance, the authors consider x2(t) as
unmeasurable. This example shows that in some cases,
even if the premise variable is measurable, there may
exist a certain degree of uncertainty, which reduces the
applicability of traditional measurable approaches. The
simulation is performed introducing measurement noise
in the output and therefore in the premise variable. In
order to minimize the effects of noise and uncertainty
on the premise variable, Corollary 1 is solved and the
following observer gains are obtained:

L1 =
[
−0.6703
11.4736

]
, L2 =

[
−0.6704
11.4746

]
,

P =
[

1.5050 0.0879
0.0879 0.0720

]
, (53)

and𝜓1 = 2.7060×104, 𝜓2 = 5.8403×10−8, 𝜓3 = 8.2491×
104, 𝜓4 = 1.7526 × 10−5, 𝜓5 = 1.7525 × 10−7.

The results of the state estimation are shown in
Figs 1 and 2, for the angular velocity and the current,
respectively. These results are compared with the results
obtained in [35]. The observer of [35] is synthesized by
using the differential mean value theorem and the non-
linear sector transformation. The estimation results are
also displayed on Figs 1 and 2. It is clear that by con-
sidering the inexact approach, the observer performance
and robustness are improved i.e. the convergence-time is
reduced and the noises are well-attenuated. Nevertheless,
it is also important to note that our approach can not
be applied in the case of unmeasurable premise variables,
due to the fact that noisy or inexact measurements are
required.

© 2018 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd
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5.2 Example 2

The lateral dynamics model of an electric vehicle is
described by [30]:

v̇y(t) =
1
m

(
Fyf (t) + Fyr(t)

)
− vx(t)𝜃̇(t),

𝜃̈(t) = 1
Iz

(
af Fyf (t) + arFyr(t)

)
+ 1

Iz
Mz(t),

(54)

Fig. 1. Comparison between the TS observer with inexact
premise variable (IPV) and the TS observer with
unmeasurable premise variable (UPV) of [35]. [Color
figure can be viewed at wileyonlinelibrary.com]

Fig. 2. Comparison between the TS observer with inexact
premise variable (IPV) and the TS observer with
unmeasurable premise variable (UPV) of [35]. [Color
figure can be viewed at wileyonlinelibrary.com]

Fig. 3. Vehicle dynamics in yaw plane. [Color figure can be
viewed at wileyonlinelibrary.com]

Table II. Parameters of the elec-
tric vehicle.

Parameter value unit

m 1500 kg
Iz 2454 kg m2

𝜂 0.1 -
af 1.1 m
ar 1.44 m
Qr 40000 -
Qf 40000 -
vxmin 5 m/s
vxmax 30 m/s

where vy(t) and 𝜃̇(t) denote the lateral velocity and the
yaw rate respectively. Fyf (t) and Fyr(t) are the lateral
forces acting on the front and rear wheels respectively,
displayed in Fig. 3. The parameters af and ar repre-
sent the distance from the front and the rear wheel to
the center of gravity. Iz is the yaw moment of inertia,
m is the total mass of the vehicle, and vx(t) is the lon-
gitudinal velocity. In addition, Mz(t) denotes the direct
yaw moment on the yaw axis, which is induced due to
the unequal tracking/braking forces on the tires. Due
to the fact that the tracking/braking forces are difficult
to measure or estimate (since the forces are related to the
variable condition of the road), it is reasonable to assume
that the direct yaw moment Mz(t) is unknown [17]. The
parameter values of the model considered in this example
are shown in Table II.

Because of the characteristics of the tires, it is gen-
erally assumed that forces Fyf (t) and Fyr(t) are generated
by a dynamical system described by:

𝜂f

vx
Ḟyf (t) + Fyf (t) = FS

yf (t),

𝜂r

vx
Ḟyr(t) + Fyr(t) = FS

yr(t),
(55)
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which takes into account the transient phase of the tires
response.𝜂i, i ∈ {r, f } are the relaxation lengths, which
are positive scalars. The inputs FS

yf
(t) and FS

yr(t) are
the steady-state (static) forces expressed by the ‘magic
formula’ of Pacejka [36]:

FS
yi(t) = i sin

(
i tan−1 (i(1 − i)𝛼i(t)

+ itan−1 (i𝛼i(t)
)))

, i ∈ {r, f },
(56)

where i, i, i and i are parameters depending on the
characteristic of the tires and the road, 𝛼f (t) and 𝛼r(t) rep-
resent the tire slip angles of the front and the rear wheels,
respectively, which are expressed as:

𝛼f (t) = −
vy(t)
vx(t)

− tan−1

( af

vx(t)
𝜃̇(t) cos

( vy(t)
vx(t)

))
+ 𝛿f (t),

𝛼r(t) = −
vy(t)
vx(t)

− tan−1

(
ar

vx(t)
𝜃̇(t) cos

( vy(t)
vx(t)

))
,

(57)

where 𝛿f (t) is the front steering angle. The body side slip

angle is defined by 𝛽(t) = tan−1
(

vy(t)
vx(t)

)
. In normal driving

situations, the lateral velocity is small, which allows to
approximate the sideslip angle by 𝛽(t) ≈ vy(t)

vx(t)
; this angle

is also small in driving mode. If, the wheel sideslip angles
𝛼f (t) and 𝛼r(t) are not greater than 8 degrees, then, (57)
can be simplified as follows:

𝛼f (t) = −
vy(t)
vx(t)

−
af

vx(t)
𝜃̇(t) + 𝛿f (t),

𝛼r(t) = −
vy(t)
vx(t)

−
ar

vx(t)
𝜃̇(t).

(58)

Also, if the forces FS
yf
(t) and FS

yr(t) are in the linear
zone [30], then, they can be expressed by the linear
expressions:

FS
yf (t) = Qf

(
−

vy(t)
vx(t)

−
af

vx(t)
𝜃̇(t) + 𝛿f (t)

)
,

FS
yr(t) = Qr

(
−

vy(t)
vx(t)

−
ar

vx(t)
𝜃̇(t)

)
,

(59)

where Qf = fff and Qr = rrr.

Finally, by using the following change of variables:

x1(t) = vy(t),
x2(t) = 𝜃̇(t),

x3(t) =
1
m

(
Fyf (t) + Fyr(t)

)
,

x4(t) =
1
Iz

(
af Fyf (t) − arFyr(t)

)
,

(60)

the system becomes:

ẋ1 = −vx(t)x2(t) + x3(t),

ẋ2 = x4(t) +
1
Iz

Mz(t),

ẋ3 = −
vx(t)
𝜂

x3(t) +
vx(t)
m𝜂

(
FS

yf (t) + FS
yr(t)

)
,

ẋ4 = −
vx(t)
𝜂

x4(t) +
vx(t)
Iz𝜂

(
af FS

yf (t) − arF
S
yr(t)

)
.

(61)

This change of variables aims at scaling the state vari-
ables and the matrices in order to reduce the conser-
vatism related to the LMI constraints. Note also that the
relaxation terms 𝜂f and 𝜂r are considered identical and
denoted by 𝜂. By assuming that the longitudinal velocity
is time-varying, which is more realistic than a constant
one (as commonly used in the literature), and by express-
ing the system in matrix formulation, System (61) can be
written as:

ẋ(t) = A
(
vx(t)

)
x(t) + B1

(
vx(t)

)
u(t) + B2𝜔(t), (62)

with 𝜔(t) = Mz(t) is an unknown input and u(t) = 𝛿f (t) is
known but not controllable and where

A(vx(t)) =

⎛⎜⎜⎜⎜⎝

0 −vx(t) 1 0
0 0 0 1

a31 a32 a33vx(t) 0
a41 a42 0 a44vx(t)

⎞⎟⎟⎟⎟⎠
,

B1(vx(t)) =

⎛⎜⎜⎜⎜⎝

0
0

b3vx(t)
b4vx(t)

⎞⎟⎟⎟⎟⎠
,

B2 =

⎛⎜⎜⎜⎜⎝

0
1
Iz

0
0

⎞⎟⎟⎟⎟⎠
,
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and

a31 = −
Qf

m𝜂
−

Qr

m𝜂
, a32 =

Qrar

m𝜂
−

Qf af

m𝜂
,

a33 = a44 = −1
𝜂
, a41 =

arQr

Iz𝜂
−

af Qf

Iz𝜂
,

a42 = −
a2

f
Qf

Iz𝜂
−

a2
r Qr

Iz𝜂
, b3 =

Qf

m𝜂
, b4 =

af Qf

Iz𝜂
.

By considering the longitudinal velocity as the
premise variable, which is bounded as 𝜉 ≤ 𝜉(t) = vx(t) ≤
𝜉 and using the sector-nonlinearity approach [19], the
following TS model is obtained:

ẋ(t) =
2∑

i=1

𝜇i(𝜉(t))
(
Aix(t) + B1iu(t) + B2w(t)

)
, (63)

where the activating functions are defined by

𝜇1(𝜉(t)) =
𝜉(t) − 𝜉

𝜉 − 𝜉
,

𝜇2(𝜉(t)) =
𝜉 − 𝜉(t)

𝜉 − 𝜉
,

and the sub-model matrices are given by

A1 =

⎛⎜⎜⎜⎜⎝

0 −𝜉 1 0
0 0 0 1

a31 a32 a33𝜉 0

a41 a42 0 a44𝜉

⎞⎟⎟⎟⎟⎠
,

B1𝛿f
=

⎛⎜⎜⎜⎜⎝

0
0

b3𝜉

b4𝜉

⎞⎟⎟⎟⎟⎠
,

A2 =

⎛⎜⎜⎜⎜⎝

0 −𝜉 1 0
0 0 0 1

a31 a32 a33𝜉 0
a41 a42 0 a44𝜉

⎞⎟⎟⎟⎟⎠
,

B1𝛿f
=

⎛⎜⎜⎜⎜⎝

0
0

b3𝜉

b4𝜉

⎞⎟⎟⎟⎟⎠
.

Given that the nonlinear sector transformation [19]
was considered to obtain the TS model, it is assumed

Fig. 4. Longitudinal velocity of vehicle. [Color figure can be
viewed at wileyonlinelibrary.com]

that the nonlinear model (62) is exactly represented by
(63), without loss of information, in an operation region,
which is bounded by the maximum and minimum values
of the premise variables.

In this work, it is considered that the vehicle is
equipped with sensors that measure the yaw rate 𝜃̇(t) and
the lateral acceleration ay(t). Due to the fact that ay(t) =
1
m

(
Fyf + Fyr

)
− vx(t)𝜃̇(t) = x3(t) − 𝜉(t)x2(t) and taking

into account additive sensor faults f (t), which can affect
the sensors, the output equation is defined as follows:

y(t) =
2∑

i=1

𝜇i(𝜉(t))Cix(t) + Df f (t), (64)

where

C1 =
(

0 1 0 0
0 −𝜉 1 0

)
,

C2 =
(

0 1 0 0
0 −𝜉 1 0

)
.

In order to detect and isolate faults in the sensors,
a bank of two observers were designed under the DOS
described in (51). To design the first observer the output
matrices are

C1
1 = C1

2 = [ 0 1 0 0 ], (65)

and for the second observer:

C2
1 = [ 0 −𝜉 1 0 ], (66)

C2
2 = [ 0 −𝜉 1 0 ]. (67)
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For both observers, the value of the matrix G is
selected as G = [0 1 0 0].

It is necessary to mention that, in electric vehicles,
the longitudinal velocity vx(t) is directly estimated by
considering the rotational velocity of the motor. How-
ever, due to the slipping of the vehicle in the longitudinal
direction, the longitudinal velocity cannot be estimated
with precision. This effect, implies that in the TS model,
the weighting functions 𝜇1(𝜉(t)) and𝜇2(𝜉(t)) are also inex-
act. To overcome this problem, it is considered that the
weighting functions have certain degree of uncertainty,
which is delimited as follows:

𝜌i ∈ [ 0.9 1.1 ], ∀i = 1, 2.

In consequence, it is possible to compute ‖ΔAi‖ and‖ΔCk
i ‖ from (10) and (11); and the upper bound of the

unknown input, Mz(t), is the maximal longitudinal force
multiplied by one half of vehicle width [17]. Then, by
considering previous remarks, the observer gains are cal-
culated by solving Corollary 1 with the Yalmip Toolbox
[37]. For the first observer, the gain matrices are given by:

L1
1 =

⎡⎢⎢⎢⎢⎣

0.0109

−0.0231

0.0436

1.1034

⎤⎥⎥⎥⎥⎦
, L1

2 =

⎡⎢⎢⎢⎢⎣

−0.0185

−0.0585

−0.1261

−4.1262

⎤⎥⎥⎥⎥⎦
,

P1 =

⎡⎢⎢⎢⎢⎣

0.0093 −0.0001 −0.0010 0.0001

−0.0001 0.0096 0.0002 −0.0010

−0.0010 0.0002 0.0081 0.0000

0.0001 −0.0010 0.0000 0.0081

⎤⎥⎥⎥⎥⎦
,

and

𝜓1
1 = 0.4835, 𝜓1

2 = 0.0080, 𝜓1
3 = 0.5637,

𝜓1
4 = 1.1274, 𝜓1

5 = 1.2165.

For the second observer, the gain matrices are:

L2
1 =

⎡⎢⎢⎢⎢⎣

−0.1117

0.0978

0.0694

−3.0835

⎤⎥⎥⎥⎥⎦
, L2

2 =

⎡⎢⎢⎢⎢⎣

0.2048

−0.1109

−0.2602

14.5403

⎤⎥⎥⎥⎥⎦
,

P2 =

⎡⎢⎢⎢⎢⎣

0.0063 −0.0002 −0.0009 0.0001

−0.0002 0.0067 0.0002 −0.0009

−0.0009 0.0002 0.0050 −0.0000

0.0001 −0.0009 −0.0000 0.0051

⎤⎥⎥⎥⎥⎦
;

and

𝜓2
1 = 0.3273, 𝜓2

2 = 5.6837 × 10−4, 𝜓2
3 = 0.3820,

𝜓2
4 = 1.7662, 𝜓2

5 = 1.0187.

To demonstrate the applicability of the method,
numerical simulations are done by considering white

Fig. 5. Normalized residuals vectors (a) ‖r1(t)‖, (b) ‖r2(t)‖; and induced fault signals (c) f1(t), (d) f2(t). [Color figure can be viewed
at wileyonlinelibrary.com]
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S. Gómez-Peñate et al.: Fault Diagnosis Based on a ∞ Sliding Mode Observer for TS Systems

noise with noise power of 1×10−6 in the signals of the sen-
sors applied to the DOS scheme. Sinusoidal signals were
considered as the known and unknown input, that are
u(t) = 0.05 sin(2t) and w(t) = 50 sin(10t) + 100 for all t.
The simulation is done by considering an initial condition
of x(0) = x̂(0) =

[
0 0 0 0

]T
.

Fig. 4 shows the premise variable vx in the test, the
red curve shows the premise variable without uncertainty
and the blue curve illustrates the simulated uncertain
measurements of the premise variable and the uncertain
factor is performed with the Simulink block Uniform
Random Number (minimum 0.95 and maximum 1.05).

To demonstrate the applicability of the FDI scheme,
a fault is induced to the yaw rate sensor (sensor 1),
denoted as f1, and a fault is induced to the lateral accel-
eration sensor (sensor 2), denoted as f2, both faults
are shown in Fig. 5c,d. Note that sensor faults can be
observed as additive bias, for example, offsets or cali-
bration problems. These malfunctions can be described
by ramp or step functions in order to represent abrupt
or slow variation faults. In this work, abrupt faults are
considered. The normalized residual signals are shown
in Fig. 5. In fault-free operation, the observers can esti-
mate the real states with a small error despite the sensor
noise and the uncertainty given in the premise variables.
However, at the time of the first fault, the first residual
changes abruptly, which is used to detect and isolate the
fault in sensor 1. In both cases, fault detection is success-
ful. The determination of the fault is made by comparing
the signature of the fault with the incident matrix given
in Table I. The proposed fault diagnosis scheme is effec-
tive to detect faults in both sensors even in the presence
of uncertainty in the weighting functions.

Fig. 6. Uncertain weighting functions. [Color figure can be
viewed at wileyonlinelibrary.com]

Finally, in Fig. 6, the behavior of the weighting func-
tions affected by the uncertainty in the premise variables
are shown. It can be noted that the region of operation
changes periodically due to the variation in the premise
variable. In this work, the measurements of the premises
variables are fault free.

VI. CONCLUSION

In this work, a ∞ sliding mode and unknown
input observer for a Takagi-Sugeno system was pro-
posed. It was considered that the TS system was affected
by premise variables that are measured with a certain
degree of uncertainty. It represents a difficult problem
concerning the computation of the observer gains, but
it increases the applicability of the method. The strat-
egy used was based on the ∞ performance criteria to
be robust against disturbances, sensor noise and uncer-
tainty induced by inexact premise variables. As a result,
the observer gains were obtained by the solution of
a set of relaxed LMI conditions. Furthermore, it was
demonstrated that the proposed approach is suitable to
detect and isolate sensor faults by means of a dedicated
observer scheme. Finally, a numerical example of the
lateral dynamics of an electric vehicle model was pre-
sented to show the effectiveness and applicability of the
proposed approach.

Future work will be done to extend the method to
actuator fault diagnosis and fault tolerant control. Note
that, a reconfigurable controller can be designed in order
to maintain stability, acceptable dynamic performance
and steady state of the system, in the event of a fault,
based on the proposed fault detection method.
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